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Summary. Reaction of 1-(cyanoacetyl)-3,5-dimethylpyra-
zole with (E)-2-cyano-3-(het)arylprop-2-enethioamides was
used for the synthesis of N-methylmorpholinium 3,5-di-
cyano-4-(het)aryl-6-oxo-1,4,5,6-tetrahydropyridine-2-thiolates
for the first time. The latter were also obtained in a multi-
component one-pot mode via the condensation of cyano-
thioacetamide with corresponding aldehydes and above
1-cyanoacetylpyrazole in the presence of N-methylmorpholine
under mild conditions. Thiolates 1 exist as a pair of cis/trans-
diastereomers in different ratios (from 3:4 to 2:1).

Keywords. Heterocycles; Cyclizations; Michael addition;
Pyridine-2-thiolates; Cyanoacetylpyrazole.

Introduction

In recent years, significant advances in the chemistry
of 3-cyanopyridine-2(1H)-thiones and related com-
pounds were achieved; this fact has resulted in a lot
of papers and some detailed reviews [1]. Numerous
examples demonstrating the useful properties of
3-cyanopyridine-2(1H)-thiones as well as its various
applications in heterocyclic synthesis have been
reported. Their partially hydrogenated derivatives,
namely, 3-cyano-1,4-dihydro- and 1,4,5,6-tetrahy-
dropyridine-2-thiolates, have not been subjected to
detailed reactivity examination until now, but the
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chemistry of these compounds started to develop ex-
tensively only over the last decade [2]. During this
period, we have investigated synthetic capabilities of
partially hydrogenated pyridine-2-thiolates towards
the synthesis of bispidine-type compounds and ring-
fused 1,3,5-thiadiazines under Mannich reaction
conditions [3]. Eventually, we found that some
3-cyanopyridine-2-thiolates may act as S,N-binucle-
ophiles to afford pyrido[2,1-b][1,3,5]thiadiazines un-
der mild aminomethylation with formaldehyde and
primary amines [4], whereas those partially hydroge-
nated and bearing an electron-withdrawing moiety
at C(5) rather reacted as C(3),C(5)-binucleophilic
species to give diazabicyclo[3.3.1]nonane (DABCN,
bispidine) derivatives [5—7]. Hence, our interest has
been focused on the Mannich-derived synthesis of
sulfur-containing bispidines — perspective chelat-
ing ligands to form complexes with transition metals
and valuable pharmaceutical agents as well [8] start-
ing from 3-cyanopyridine-2(1H)-thiones and corre-
sponding thiolates. From this point our attention was
attracted to the readily available 3,5-dicyano-6-oxo-
1,4,5,6-tetrahydropyridine-2-thiolates 1, which are
expected to be suitable predecessors of DABCN de-
rivatives. In the preliminary communication [6], we
presented some results on the aminomethylation of
certain thiolates obtained so far.

General approaches to thiolates 1 are based on the
Hantzsch-type cyclocondensation in the following
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modes: A) reaction of cyanoacetic esters 2 with
2-cyanoprop-2-enethioamides 3 [9, 10]; B) reaction
of 2-cyanoacrylates 4 with cyanothioacetamide 5
[9-13]; or C) in a multicomponent way — on the
reaction of corresponding aldehyde (ketone) 6, esters
2, and cyanothioacetamide 5§ [14—17] (Scheme 1).
All the approaches suffer from some drawbacks.
First, the yields of thiolates 1 are usually fair to good
(40-80%), but sometimes these results are irre-
producible for unknown reasons. Next, in most cases
the reaction’s course depends critically on the struc-
ture of starting compounds, sequence of mixing the
components, as well as condensation conditions. Thus,
in approach C satisfactory results were obtained when
some aliphatic aldehydes, cycloalkanones, PhCHO,
and ortho-substituted benzaldehydes were used as
carbonyl components 6 [15, 17]. However, in the
case of aldehydes bearing strong electron-donating
substituents (alkoxy-, dialkylamino-) at para/ortho-
positions, only 3-aryl-2-cyanoprop-2-enethioamides
3 were isolated as the sole products as the result of
so-called exchange of methylene components [17].
The same results were obtained when 3-aryl-2-cya-

noacrylates 4 were treated with thioamide 5 in the
presence of N-methylmorpholine at ambient tem-
perature [18] (Scheme 2). Evidently, compounds 3
bearing strong electropositive groups in their 3-aryl
substituent are less active in Hantzsch synthesis than
other unsaturated thioamides, and do not react with
cyanoacetic esters under mild conditions. Another
limitation for the synthesis of 4-monosubstituted
thiolates 1 is the side process of subsequent formation
of 3,5-dicyano-6-hydroxypyridine-2(1H)-thiones 7
as by-products due to oxidation of thiolates 1 in situ.
Compounds 7 became the main products when 3-
aryl-2-cyanoprop-2-enethioamides 3 were put into
reaction with cyanoacetates 2 under stronger condi-
tions [19, 20]. Moreover, the reaction of 2-cyanoa-
crylates 4 with cyanothioacetamide 5, which could
be considered a priori as a contrary method for
synthesis of 1 (Approach B), is also generally known
as a method for synthesis of dehydrogenated pyri-
dine-2(1H)-thiones 7 [19-23]. So, any methodology
free from the drawbacks mentioned above and suited
to selectively yield 3,5-dicyano-6-oxo-1,4,5,6-tetra-
hydropyridine-2-thiolates 1 is of considerable inter-
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est. Hence, we decided to put into the above Hantzsch-
type reactions 1-cyanoacetyl-3,5-dimethylpyrazole
(8) as active methylene component instead of cyano-
acetic esters 2.

Cyanoacetylpyrazole 8 is a very handy and cheap
cyanoacetylation reagent, which was for the first
time synthesized and introduced in common practice
in late 1950s by Ried et al. [24—29]. It was success-
fully applied for the synthesis of various N-sub-
stituted cyanoacetamides and -hydrazides [25-28,
30-37], N-(cyanoacetyl)semicarbazides [32], (cya-
noacetamido)phenyl acrylate polymers useful for
making toners for electrostatographic developers
[38], and found to be a good precursor for the gen-
eration of cyanoketene upon flash vacuum thermo-
lysis [39]. Cyanoacetylpyrazole 8 in itself is known
as an inhibitor of NH4" to NO3; ™ nitrification, thus
preventing the nitrogen loss from the soil [40]. How-
ever, only few examples for use of this compound in
heterocyclic chemistry have been reported up to now.

Thus, when treated with phosgene or thiophosgene
8 yields mesomeric cross-conjugated betaines — an-
hydro-2-cyano-1-hydroxypyrazolo[1,2-a]pyrazolium
hydroxides in poor yields (10%) [41]. Upon treatment
with 8 in basic medium, 1,2,4-dithiazolium perchlo-
rates undergo ring enlargement to produce 5-cyano-
1,3-thiazin-6-ones [42], while 3,5-bis(2-oxocyclo-
hexadienylidene)-1,2,4-dithiazolidine under similar
conditions afforded 1-enzopyrano[3,4-d]|pyrimidine
derivatives [43]. Reaction with salicylaldehydes lead-
ing to 2-iminochromenes is the only known exam-
ple featuring 8 in a Knoevenagel-type condensation
[44]. However, 8 has never been used as an active
methylene component in numerous modifications of
Hantzsch pyridine synthesis [45].

Results and Discussion

We found that treatment of equimolar quantities of
(E)-2-cyano-3-(het)arylprop-2-enethioamide 3a—3d
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and 8 with 1.5 eq. of N-methylmorpholine in aceton-
ic solution at 25°C gave N-methylmorpholinium
3,5-dicyano-4-(het)aryl-6-oxo-1,4,5,6-tetrahydropyr-
idine-2-thiolates 1a—1d in good to excellent yields
(68-96%) (Method A, Scheme 3). Thiolate 1a was
also obtained via a three-component one-pot con-
densation of o-chlorobenzaldehyde, cyanothioaceta-
mide 5, and 8 under similar conditions in 81% yield
(Method B). We suggest that the reaction proceeds
through a base-promoted Michael addition to form
non-isolable adduct 9 followed by intramolecular N-

acylation of the thiocarbamoyl moiety with elimina-
tion of 3,5-dimethylpyrazole.

All thiolates 1a—1d were characterized by means
of '"H NMR measurements and IR spectra, as well as
elemental analysis. As it followed from the "H NMR
data, the reaction has a non-stereoselective charac-
ter: all the obtained compounds in DMSO-dg solu-
tion exist as a mixture of two diastereomers in
various ratios (from 3:4 to 2:1) with coupling con-
stants Jeyn-csu of 6.3-7.3 and 9.7-11.4 Hz, cor-
responding to cis- and frans-isomers on basis of
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torsional angle C(4)H—C(5)H calculations using the
Karplus-Conroy equation (about 29-36 and 146-—
157°) [46]. This fact was found to be in good agree-
ment with observations reported prior [15] for related
pyridine-2-thiolates. As it follows from X-ray dif-
fraction analysis data, (4R,5S)-structures (for 1b and
1lc — (4S,55)-structures) must be attributed to the
trans-diastereomers of 1; the latter were proven of
being only frans-isomers in the solid state [15]. It is
believed that the cis-isomers have a structure of
(4R,5R)-diastereomers (for 1b and 1¢ — (4S,5R)-dia-
stereomers). Probably, both stereomers appeared due
to fast base-promoted C(5)-epimerization in DMSO-
de solution. Thus, two sets of protons were observed
in the '"H NMR spectra of 1a—1d. Signals of C(4)H
and C(5)H protons appeared as two doublets (or
quartets, AX-system) at 6 =3.77-4.91 ppm for cis-
isomers and 6 =4.13-4.45 ppm for trans ones with
coupling constants values given above. Two broad-
ened and partially deuterium-exchanged peaks at
6=9.45-9.71 ppm must be attributed to NH-pro-
tons. The IR spectra of thiolates 1 revealed the
absorption bands in the regions 3180-3150cm™!
(lactam NH stretches) and 1710-1680cm™' (lactam
carbonyl stretching frequencies). For both conju-
gated (7=2185-2177 cm~!, strong) and non-conju-
gated (7 =2253-2247 cm~!, weak) C=N groups the
characteristic bands were also observed.

The pyridine-2-thiolates 1 are slightly yellowish
crystalline powders, which are insoluble in acetone
or ether, but readily soluble in DMF, DMSO, or hot
diluted EtOH. Compounds 1 are quite stable in the
solid state, but undergo slow oxidation when being
dissolved in EtOH or DMSO to form the dehydro-
genated derivatives 7. The oxidation proceeds espe-
cially easily in the case of 1c and 1d. Thus, '"H NMR
spectra of freshly prepared samples of 1c¢ and 1d in
DMSO-dg revealed minor signals (up to 7 molar per-
cents according to the integral values) of by-products
7 (see Experimental for details), while IR and ele-
mental analysis data did not give any evidence for
the presence of oxidized products — at least in the
solid state. It must be noted that synthesis of 1c¢ and
1d has not been reported hitherto, probably due to
their ready oxidation caused by prolonged reaction
time or harsh conditions used before.

In conclusion, here we present a new, highly
effective, and superior approach to N-methylmor-
pholinium 3,5-dicyano-4-(het)aryl-6-oxo-1,4,5,6-tet-
rahydropyridine-2-thiolates 1 via condensation of
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1-(cyanoacetyl)-3,5-dimethylpyrazole with (E)-2-
cyano-3-(het)arylprop-2-enethioamides in the pres-
ence of N-methylmorpholine.

Experimental

Melting points were measured on a Kofler hot stage apparatus.
Elemental analyses for C, H, and N were conducted using
a Perkin-Elmer C, H, N Analyzer; their results were found
to be in good agreement with the calculated values (£0.2%).
IR spectra were recorded on an IKS-29 spectrophotometer in
Nujol mulls. The '"H NMR spectra were performed on a Var-
ian Mercury VX-200 (199.97 MHz) spectrometer on DMSO-
dg solutions with Me,Si as the internal standard. The purity of
all obtained compounds was checked by TLC on Silufol® UV
254 plates (sorbent — Silpearl, large-pore silicagel after Pitra
with luminiscent indicator for UV 254 on the aluminum foil,
binder — starch) in the acetone—heptane (1:1) system; spots
were visualized with iodine vapors and UV light. The starting
(E)-2-cyano-3-(het)arylprop-2-enethioamides 3 were prepared
by condensation of corresponding aldehydes with cyanothio-
acetamide according to the general method reported in
Ref. [18]; their physical data were found to be identical with
the ones previously described [47—-50]. Cyanoacetylpyrazole 8
was prepared from cyanoacetohydrazide and acetylacetone in
acidic medium by known method [24-27, 32, 37].

N-Methylmorpholinium 3,5-dicyano-4-(het)aryl-6-oxo-
1,4,5,6-tetrahydropyridine-2-thiolates (1la—1d). General
Procedure (Method A)

To the clear solution of corresponding thioamide 3a-3d
(3.0mmol) and 0.5g cyanoacetylpyrazole 8 (3.1 mmol) in
10-15cm’® acetone, 0.5cm® N-methylmorpholine (4.5 mmol)
were added at once. The mixture was vigorously stirred for
30min at 25°C, the precipitated product was filtered off,
washed with acetone and ether to give 1a, 1b, and 1d. Due
to the limited solubility of (E)-2-cyano-3-(3,4-dimethoxyphe-
nyl)prop-2-enethioamide 3¢ in acetone, the suspension of 3c,
8, and base was stirred for 24 h, then thiolate 1¢ was worked
up as described above.

Tetrahydropyridine-2-thiolate (la) via Three-Component
Condensation of Aldehyde, Cyanothioacetamide,

and Cyanoacetylpyrazole (Method B)

To a mixture of 1.7 cm® o-chlorobenzaldehyde 6a (15 mmol)
and 1.5g of cyanothioacetamide 5 (15mmol) 3-4 drops
N-methylmorpholine and 4cm® acetone were added in suc-
cession. The solution was stirred with a glass stick until
exothermic reaction completed and (E)-3-(2-chlorophenyl)-
2-cyanoprop-2-enethioamide precipitated (about 5min). To
this suspension 15cm’ acetone, 2.6 g cyanoacetylpyrazole 8
(16 mmol) and 2.5 cm’® N-methylmorpholine (22.5 mmol)
were added in succession. The red solution formed quickly
turns to light orange, and a white precipitate separated within
2min. The mixture was stirred for 0.5h, solid product was
filtered off, and it was washed with hot acetone and ether to
afford 4.75 g (81%) thiolate 1a.
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N-Methylmorpholinium 4-(2-chlorophenyl)-3,5-dicyano-6-
oxo-1,4,5,6-tetrahydropyridine-2-thiolate, ((4R,5R)-(cis):
(4R,5S)-(trans) = 9:10) (1a)

Yield: 96% (Method A) or 81% (Method B); m.p.: 197-200°C
(dec.) (Ref. [15]: 210-212°C reported for cis:trans (1:1) mix-
ture); '"H NMR (200MHz, DMSO-dg): 6 =2.78 (s, NCHs),
3.18 and 3.76 (both m, each 4H, O(CH,CH,),N), 4.41 (d,
3J=73Hz, C(4)Hy), 445 (q, *J=11.2Hz, C(4)Hyans and
C(5)Hyans), 491 (d, *J=73Hz, C(5)H.), 7.14-7.49 (m,
4H-Ar), 9.69 and 9.71 (both br s, NHis, NHgans) ppm; signal
of NH*-proton was not detected, probably due to proton-
deuterium exchange; IR (nujol): ¥=3180 (N-H), 2247,
2177 (2 C=N), 1680 (C=0) cm™'.

N-Methylmorpholinium 4-(4-chlorophenyl)-3,5-dicyano-6-
oxo-1,4,5,6-tetrahydropyridine-2-thiolate, ((4S,5R)-(cis):
(48,5S)-(trans) = 1:1) (1b, C13H;9CIN4O,S)

Yield: 78% (Method A); m.p.: 165-168°C (dec.); '"H NMR
(200 MHz, DMSO-dg): 6 =2.78 (s, NCH3), 3.17 and 3.75 (both
m, each 4H, O(CH,CH,),N), 3.89 (d, *J=6.3 Hz, C(4)H.),
422 (dd, *J=11.4Hz, C(4)Hyans and C(5)Hyans), 4.80 (d,
3J =6.3Hz, C(5)H), 7.14-7.52 (m, 4H-Ar), 9.59 (br s, NH,
NH,.ans overlapped) ppm; signal of NH'-proton was not de-
tected, probably due to proton-deuterium exchange; IR (nujol):
7=3150 (N-H), 2253, 2185 (2 C=N), 1700 (C=0) cm™.

N-Methylmorpholinium 3,5-dicyano-4-(3,4-dimethoxy-
phenyl)-6-oxo-1,4,5,6-tetrahydropyridine-2-thiolate,
((4S,5R)-(cis):(4S,5S)-(trans) = 3:4) (1¢, CooH24N404S)
Yield: 70% (Method A); m.p.: 189-192°C (dec.); '"H NMR
(200MHz, DMSO-dg): 6=2.78 (s, NCH3), 3.17 and 3.72
(both m, each 4H, O(CH,CH,),N), 3.77 (d, *J=6.7Hz,
C(4)Hy), 4.13 (dd, >J=10.9Hz, C(4)Hyans and C(5)Hyans),
4.71 (d,*J = 6.7 Hz, C(5)H,s), 6.65-7.01 (m, 3H-Ar), 9.48 (br
s, NH;s, NHy,s overlapped) ppm; signal of NH*-proton was
not detected, probably due to proton-deuterium exchange;
also a broadened peak at 6=11.73ppm corresponding to
NH proton of by-product 7 (about 6 mol%) was observed;
IR (nujol): v=3150 (N-H), 2253, 2185 (2 C=N), 1695
(C=0) cm™ .

N-Methylmorpholinium 3,5-dicyano-4-(fur-2-yl)-6-oxo-
1,4,5,6-tetrahydropyridine-2-thiolate, ((4R,5R)-(cis):
(4R,5S)-(trans) :2]) (ld, C16H18N4O3S)

Yield: 68% (Method A); m.p.: 178-180°C (dec.); 'H NMR
(200 MHz, DMSO-dg): 6 =2.78 (s, NCH3), 3.18 and 3.76 (both
m, each 4H, O(CH,CH,),N), 3.94 (d, *J=6.5Hz, C(4)H.),
420 (dd, *J=9.7Hz, C(4)Hyas and C(5)Hyans), 4.70 (d,
3J=6.5Hz, C(5)Hg), 6.12 (m, furyl-C(3)H), 6.24 (m,
furyl-C(3)Hans), 6.36 (m, furyl-C(4)H,;s and -C(4)H;ans OVer-
lapped), 7.55 (m, furyl-C(5)H.), 7.59 (m, furyl-C(5)H rans)s
9.45 (br s, NH), 9.58 (br s, NH.ns) ppm; signal of NH™-
proton was not detected, probably due to proton-deuterium
exchange; also four peaks at § =6.69, 7.12, 7.93 (fur-2-yl),
and 11.83 (NH) ppm corresponding to pyridine-2(1H)-thione
7 (about 7 mol%) were observed; IR (nujol): ¥ =3180 (N-H),
2250, 2183 (2 C=N), 1710 (C=0) cm™'.
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